Advanced tools and techniques for delayering and cross-sectioning semiconductor devices

P. Nowakowski, M.L. Ray, P.E. Fischione E.A. Fischione Instruments, Inc., Export, PA 15632 USA

Introduction

Constantly evolving microelectronic device designs continue to grow more complex, more compact, and smaller. The designs may include an increasing number of layers, three-dimensional (3D) vertical stacking, air gaps, and different material compositions (e.g., Si₃N₄, SiO₂, Al, Cu, W, Ti, TiN, and low-k dielectrics). For this reason, top-down delayering, which is a widely used failure analysis (FA) and quality control technique, has become very challenging. The primary challenges are looking through many dissimilar nanoscale layers and attempting to investigate different layers simultaneously [1].

Conventional mechanical sample preparation is a difficult and uncontrolled process that does not allow targeting of a specific depth or layer [1, 2]. Because of the difficulties presented by mechanical sample preparation, there has been an emergence of beam-based techniques for device delayering applications. Gallium and xenon focus ion beam (FIB) techniques have been widely employed [1, 3, 4] – both tools present limitations that include a relatively small delayering area: about 20 x 20 μm for Ga FIB [1] and about 100 x 100 μm for Xe FIB [4, 5]. This size limitation makes it impossible to prepare a large slope area with the goal of exposing all the layers simultaneously.

Cross sectioning is another commonly used technique used in microelectronics industry investigations; when combined with delayering, one can gain complete knowledge about a device's faults. Cross-sectioning is often done by cleaving, mechanically polishing or, alternatively, FIB processing. As in the case of delayering, these techniques have similar limitations.

There is a need for a precise, fast, and relatively simple delayering technique for full-size wafers and for creating cross-section samples from small wafers.

This paper presents a development in semiconductor device investigation using low energy, broad-beam argon ion milling. Broad-beam argon ion milling has an advantage in that it allows material removal from larger areas [6, 7]. This technique also allows large slope area preparation, as well as a precise and controlled delayering process [7].

Experiment

The experiment was performed on two commercially available devices: 3D vertical stack memory (Samsung 3D V-NAND) and a solid-state drive (SSD) containing air gap architecture [Intel]. The devices were chosen because the elaborate structures nicely demonstrate the delayering and cross-sectioning techniques.

Cross-section sample preparation

Cross-section samples of the devices were made using the Model 1061 SEM Mill [Fischione Instruments]. The devices were cleaved and mounted on a protective mask using a cross-section loading station [Fischione Instruments], which allows positioning of the mask within 10 µm. The samples were ion milled with the following parameters: one argon ion beam, 5 kV acceleration voltage, 0° beam angle, and 20° rocking stage motion.

Delayering sample preparation

3D V-NAND flash memory top-down delayering

The 3D V-NAND flash memory top-down delayering was accomplished with the Model 1063 WaferMillTM ion beam delayering solution [Fischione Instruments], an instrument designed for pre-CD-SEM sample preparation.

The number and arrangement of the instrument's three Ar ion sources (arranged in a circle and spaced 120° apart) allow fast and uniform milling. The acceleration voltage can vary from 0.1 V to 10 kV. The beam tilt for the instrument can be adjusted from 22.5 to 32.5°. This configuration allows processing of 300 mm wafers. The delayering process was carried out at 4 keV with a 22.5° beam angle [7, 8]. The full top-down delayering duration was 50 minutes.

SSD delayering

The Model 1061 SEM Mill [Fischione Instruments] is a compact, tabletop ion mill for multiple sample preparation applications [6-12]. The instrument is fitted with two argon ion sources. The ion energy can vary from 0.1 eV to 10 keV. The beam angle can be adjusted from 0 to 10° . The chamber was designed to process $32 \times 25 \,$ mm samples. SSD delayering was done at $5 \,$ kV acceleration voltage, 3° beam angle, and 360° continuous stage rotation.

Because of the complexity of the samples' architecture and the many different materials present, the delayering process was not based on a specific material removal rate, but instead, was accomplished in two-minute steps. After each step, samples were imaged by field emission gun scanning electron microscope (FEG SEM) system and EDS data were collected.

Cross-sectioning results

Cross-section samples were prepared as a reference for the delayering samples. It is very important step in the delayering process that is done primarily to aid in determining the delayering process strategy. Cross-section samples of 3D V-NAND flash memory and SSD are shown (Figures 1 and 2) after argon ion milling at 5 keV. The EDS measurements allow the identification of all the layers that are visible in the cross-section specimens. All layers are describes in Tables 1 and 2.

Table 1: Layers identified in 3D V-NAND memory sample.

Layer shown	
in Figure 1	Layer material and purpose
a	Si ₃ N ₄ protective layer
b	SiO ₂ filling layer
С	Top TiN diffusion barrier layer
d	Al interconnection layer
e	Bottom TiN diffusion barrier layer
f	Cu bit line
g	W source line
h	W core wrapped by a Si3N4 annular
	connectors
i	Vertical W common contacts
j	3D vertical memory channel
k	3D vertical memory channel
1	3D vertical memory channel
m	3D vertical memory channel
n	3D vertical memory channel
0	3D vertical memory channel
р	3D vertical memory channel
q	3D vertical memory channel
r	Last layer (end of W common contacts)

Table 2. Layers identified IN SSD air gaps architecture

Layer shown	
in Figure 2	Layer material: thickness
a	Si ₃ N ₄ : 800 nm
b	SiO ₂ : 1000 nm
c	TiN: 50 nm
d	Al: 700 nm
e	TiN: 100 nm
f	SiO ₂ : 500 nm
g	Cu: 200 nm
h	W: 50 nm
i	Beginning of vertical W column: 450 nm
j	SiO ₂ : 250 nm
k	Si ₃ N ₄ : 80 nm
1	W: 80 nm
m	End of vertical W column: 450 nm

Delayering results: V-NAND

The first layer from the top of the 3D V-NAND flash memory is a Si_3N_4 protective layer (Figures 1a and 3a). This layer is followed by the SiO_2 fill layer (dark contrast in Figure 3). Figures 1d and 3d show the Al interconnection layer. This layer has a TiN diffusion barrier layer on the top (Figures 1c and 3c) and on the bottom (Figures 1e and 3e). In the next layer, the memory portion of the device begins. A Cu bit line (Figures 1f and 3f) connects to a W source line (Figures 1g and 3g). Round connectors can be observed (Figures 1h and 3h) beneath the W source line.

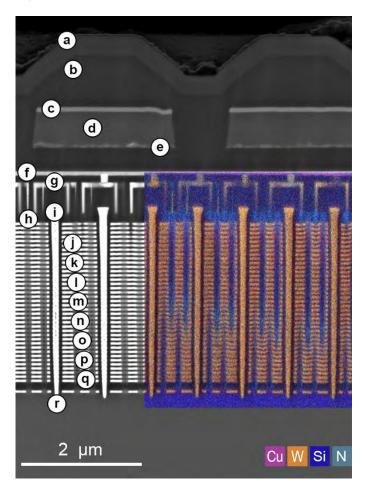
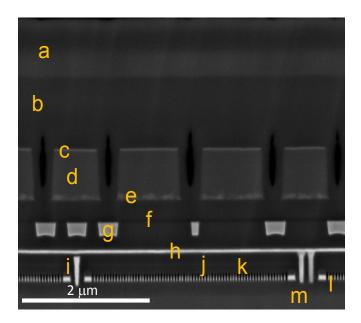



Figure 1. 3D V-NAND flash memory cross-section sample after argon ion milling at 5 keV and energy dispersive spectrometry (EDS) measurements at 3 keV. Lettered layers cross reference with layers revealed during the top-down delayering process (Figure 3).

Delayering results: SSD

The first layer from the top of the SSD air gaps device is a Si_3N_4 protective layer (Figure 2a). This layer is followed by the SiO_2 fill layer (dark contrast in Figures 2b and 4b). Figures 2d and 4d show the Al interconnection layer. This layer has a TiN diffusion barrier layer on the top (Figure 2c)

and on the bottom (Figure 2e). Figure 4f shows the Cu line and W contacts in SiO_2 , which are located at level f of the cross-section sample (Figure 2). Underneath is a Cu line (Figures 2g and 4g). A tungsten line (Figures 2h and 4h) is then observed, which is connected to vertical W columns (Figures 2i and 4i, 4m). The air gaps are formed by two parts: the top is Si_3N_4 (Figures 2k and 4k) and the bottom is W (Figures 2l and 4l).

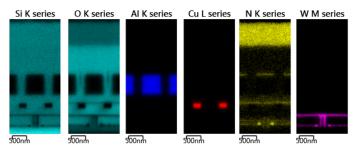


Figure 2. SSD with air gaps cross-section sample after argon ion milling at 5 keV and EDS measurements at 5 keV. Lettered layers cross reference with layers revealed during the top-down delayering process.

Conclusions

Broad-beam Ar ion milling is an accurate solution for advanced microelectronic device cross-sectioning and full top-down delayering. It reveals the 3D architecture of complex microelectronic structures layer by layer, and permits accurate targeting of specific layers for failure analyses. The results highlight that broad-beam Ar ion milling produces excellent surface quality, which allows high resolution SEM observation and EDS analyses, even at low energy.

References

- [1] DD Wang et al., AIP Adv. 5 (2015), p. 127101-127019.
- [2] AC Bonora, Solid State Technol. 20 (1977), p. 55-62.
- [3] H Yap et al., *Microelectron. Reliab.* 55 (2015), p. 1611-1616.
- [4] JV Obona et al., Microsc. Microanal. 22 (2016), p. 56-57.
- [5] R Alvis et al., Conf. Proc. Int. Symp. Test. Failure Anal. (2015) p. 1-13.
- [6] P Nowakowski et al., Microsc. Microanal. 23 (Suppl 1) (2017), p. 12-13.
- [7] P Nowakowski *et al.*, 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (2017), p. 95-101.
 - URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arn umber=7969206&isnumber=7969182
- [8] P Nowakowski *et al.*, Microsc. Microanal. 23 (Suppl 1) (2017), p. 1408-1409.
- [9] P Nowakowski *et al.*, *Microsc. Microanal.* 22 (2016), p. 12–13.
- [10] P Nowakowski *et al.* European Microscopy Congress 2016: Proceedings (2016), p. 1082-1083.
- [11]P Nowakowski *et al*, European Microscopy Congress 2016: Proceedings (2016), p. 650-651.
- [12] P Nowakowski *et al.*, Microsc. Microanal. 23 (Suppl 1) (2017), p. 2224-2225.

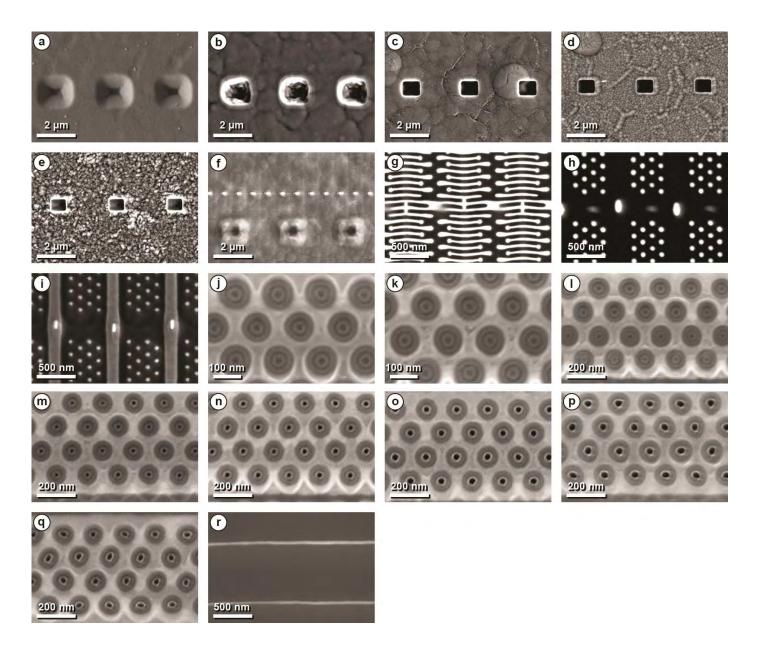


Figure 3. 3D V-NAND flash memory layers revealed by a pre-CD-SEM ion beam delayering instrument and imaged by a FEG SEM.

Figure 4. Air gap achitecture revealed by argon ion beam delayering process and imaged by a FEG SEM.